Vol.35 No.8

Transactions of Information Processing Society of Japan

Regular Paper

Optimal Granularity of Parallel Test Generation on the
Client-Agent-Server Model

ToM0O INOUE," TOMONORI YONEZAWA ' and HIDEO FUJIWARA |

This paper proposes a Client-Agent-Server model (CAS model) which can decrease the work load
of the client by adding agent processors to the Client-Server model and presents an approach to
parallel test generation for logic circuits on the CAS model. In this paper, we consider the fault
parallelism in which a cluster of faults will be allocated from the client processor to an agent
processor and from an agent processor to a server processor for the CAS model. Hence, we have to
consider two granularities; one is the size of the cluster between the client and agents, and the other
is the size of the cluster between agents and servers. We formulate the problem of test generation for
the CAS model and analyze the optimal pair of granularities in both cases of static and dynamic task
allocation. Finally, we present experimental results based on an implementation of our CAS model
on a network of workstations using the ISCAS'89 benchmark circuits. The experimental results are
very close to the analytical results which confirms the existence of an optimal pair of granularities

Aug. 1994

that minimizes the total processing time for benchmark circuits as well as analysis.

1. Introduction

Theoretically, it is shown that the problem of
test generation for logic circuits is NP-hard"?
even for combinational circuits, and hence it is
very difficult to speed up the test generation
process due to backtracking mechanism. On the
other hand, efficient heuristics to speed up test
generation have been proposed®~® but handling
the increased logic complexity of VLSI circuits
has been severely limited by the slowness of
conventional CAD tools on a general purpose
computer. Multiprocessing hardware has to be
used to get orders of magnitude speed up for
those circuits of VLSI or ULSI complexity.

There are several types of parallelism inherent
in test-pattern generation: fault parallelism,
search parallelism, heuristic parallelism and
topological parallelism.'? Fault parallelism
refers to dealing with different faults in parallel.
Motohara et al.,” Patil and Banerjee,’® and
Fujiwara and Inoue'® presented their methods
of parallel processing for test generation based
on fault parallelism. Search parallelism refers to
searching different nodes of a decision tree (in a
branch-and-bound search) or to searching
different input-vectors in parallel. Motohara et
al.” and Patil and Banerjee!" proposed their
methods of parallel processing for test genera-

1 Nara Institute of Science and Technology
1 Matsushita Electric Industrial Co., Ltd.

1614

tion based on search parallelism. Heuristic
parallelism refers to dealing with one fault using
different heuristics in parallel. Chandra and
Patel® reported an approach to heuristic paral-
lelism. Topological parallelism refers to simulat-
ing different sub-circuits in parallel. Kramer®
and Hirose et al.” presented their methods of
parallel processing for topological parallelism.

In Ref. 10). we presented an approach to
parallel test generation based on fault parallel-
ism in a loosely-coupled distributed network of
general purpose computers and analyzed theoret-
ically the effect of the allocation of target faults
to processors using a Client-Server model (CS
model) illustrated in Fig. 1. We showed the
existence of the optimal granularity or the opti-
mal number of target faults allocated to proces-
sors which minimizes the total processing time
for the CS model. For this CS model, as the
number of processors increases, communication
overhead among processors also increases, and
hence, the total performance goes down. This
problem of performance degradation can be
usually resolved by using a hierarchical
approach.

In this paper, as the hierarchical approach, we
propose a Client-Agent-Server model (CAS
model) which can decrease the work load of the
client by adding agent processors to the CS
model. We consider the fault parallelism in
which a cluster of faults will be allocated from

Vol. 35 No.8

Client

Server 1 Server 2 Server N

Fig. 1 Architecture of the Client-Server model.

the client processor to an agent processor and
from an agent processor to a server processor for
the CAS model. Hence, we have to consider two
granularities; one is the size of the cluster
between the client and agents, and the other is
the size of the cluster between agents and servers.
We formulate the problem of test generation for
the CAS model and analyze the optimal pair of
granularities in both cases of static and dynamic
task allocation. Finally, we present experimen-
tal results based on an implementation of our
CAS model on a network of workstations using
the ISCAS’89 benchmark circuits. The experi-
mental results are very close to the analytical
results which confirms the existence of an opti-
mal pair of granularities that minimizes the total
processing time for benchmark circuits as well as
analysis.

2. Architecture of the Client-Agent-Server
Model

The architecture of our loosely-coupled multi-
ple processor systems is illustrated in Fig.2.
This system is derived by inserting agent proces-
sors between a client and servers of the CS
model. We call it a Client-Agent-Server model
(CAS model). 1In this CAS model, N, agents
are connected to the client, and N; servers are
connected to each agent, where all processors are
connected to a single communication network.

Optimal Granularity of Parallel Test Generation 1615

The client requests an agent to execute a task
and to return the result. An agent partitions a
task into sub-tasks and distributes each sub-task
to a server connected to the agent. When a
server finishes its assigned task, it sends the
result to the agent and requests a new task.
After an agent finishes the task from the client, it
sends the result to the client and requests a new
task. The client saves the result, and sends a new
task to the agent. This process is repeated until
all tasks are processed.

Here if we regard the task as test generation
for faults in a given circuit, the above process
can be redescribed as follows:

The client first generates a fault table of the
faults. The client extracts a number of faults
from the fault table as a set of target faults, and
sends the faults to an agent. When an agent
receives the target faults from the client, the
agent sends a subset of the target faults to a
server connected to the agent as a set of target
faults for the server. A server which received the
target faults generates a test-pattern for one of
the target faults, and finds out all detected faults
by the test-pattern by performing simulation for
all faults in the circuit, not just those in the set
of target faults. The server repeats test-pattern
generation and fault simulation for all the target
faults, and then sends the result to the agent.
After receiving the result from the server, the
agent saves it in its own storage. The agent then
sends a new set of target faults which have not
yet been processed by any server of the agent,
and sends it to the server. After all the target
faults assigned to the agent are processed, the
agent sends the results to the client and requests
a new set of target faults. The client updates the
fault table, and sends new target faults to the
agent. This process continues until all faults in

Client

Agent 1

1 | I

Server 11 |....}Server IN ¢

I
AgentN 4

ServerN, 1}| ServerV N

Fig.2 Architecture of the Client-Agent-Server model.

1616 Transactions of Information Processing Society of Japan

the fault table are processed.
3. Formulation of the Problem

We formulate the test generation problem for
the CAS model. It consists of one client, N,
agents and N, servers per agent. Let the k-th
server connected to the j-th agent A4; be server
Si.. A process of test-pattern generation for a
fault f; is called a process for fault f;, The
result of a process for a fault is whether 1) the
fault is detected by a test-pattern, or 2) the fault
is redundant, or 3) the process is aborted due to
the exceeded backtracking.

The parameters used here are defined as fol-
lows:

M: the total number of faults of a given
circuit.

Tn: the processing time of server S, for
fault f;.

Oux: the probability that process for fault f;
is allocated to server Sj.

Aqiyi the probability that agent A; communi-
cates to the client after process for fault
fi

Asie: the probability that server S, commu-
nicates to Agent A; after process for
fault f.

Teo: the mean communication time which
includes waiting time due to contention
and data transfer time between the cli-
ent and agents.

Tcs: the mean communication time which
includes waiting time due to contention
and data transfer time between an agent
A; and servers.

Then, the average time necessary to complete
all processes allocated to server S, is

M
T = glgzjk (Tz‘jk+/1aijfca+Asijchs) . N

The time necessary to complete all processes is
defined by the maximum of Tj:

T =max{T;}. (2)
4. Optimal Granularity with Static Task
Allocation

First we consider static task allocation of
faults where the numbers of target faults from
the client to an agent and from an agent to a
server are always constant respectively.

4.1 Assumption of Homogeneous Problem

To obtain the minimum processing time on

Aug. 1994

the CAS model, it is important to equalize the
load of each server. Here, we shall assume a
homogeneous case is follows:
(1) All servers are uniform, i.c.,

Tijp—Ti (‘;)
for all faults f; and servers Sj,.
(2) For any fault f;, the probability that fault
fi 1s allocated to a server S is independent of
the server Sy, i.e.,

5ijk:8i (4)
for all faults f; and servers S.

4.2 Communication Probability: A,;, As;s

Let m, be the number of target faults transfer-
red from the client to an agent A4, during each
communication. Suppose that fault f; is in the
set of m, target faults allocated to the agent A;.
Then the probability that the agent 4, communi-
cates to the client after process for fault f; is

1
Aau*—nz (5)
since such a communication occurs only once
for those m, faults.

Let m, be the number of target faults transfer-
red from an agent A4; to a server S, during each
communication. Suppose that fault f; is in the
set of mj target faults allocated to the server Sj,
from the agent A4;. Then the probability that the
server S, communicates to the agent A; after
process for fault f; is

]
Asz’jk—’mi (6)

S

since such a communication occurs only once
for those mg faults.

4.3 Probability of Process Allocation: §;,

Suppose that the client requests an agent to
process m, target faults. The agent extract m;
faults from the m, target faults, and requests a
server to process the m; target faults. Note that
ms<m,. The server generates a test-pattern for
one of the m faults, and find out all the faults
detected by the test-pattern by performing fault
simulation for all faults, not just those in the set
of mg target faults. It repeats test-pattern genera-
tion and fault simulation until all target faults
are processed. Let pomyg be the number of faults
that are newly detected or found to be redundant
at completion of test generation for mi target
faults. Let us call those faults newly processed
Sfaults.

Let us define the ratio of newly processed
faults to target faults:

Vol.35 No.8

number of newly processed faults
_ per server (pms)
number of target faults per server ()
@)
Note that this ratio will decrease as the number
of processed faults increases. Therefore, it is
expressed as o;, the ratio for ith processed fault
1
During each iteration of the server process, m;
target faults are processed by the server and pmis
faults are either detected or identified to be
redundant through both test-pattern generation
and fault simulation. Hence, the probability
that fault f; is allocated as a target fault to some
server is
ms _ 1 _ (8)
0:Ms Qi
On the other hand, the probability that the
process for fault f; is allocated to some server is

0

defined by
Na Ns
221 i 9)
J=lhk=1

Therefore, we have
34 S =) (10
j:u;] ijk"E~)

From the assumption that §;,= &, we have
Na Ns Na Ng
ZZ&M:ZZ&:MNS&-. (11)
i=1lk=1 J=1k=1

Hence, we have
Qi =0: l (12)

T NuNsoi

4.4 Ratio of Newly Processed Faults to

Target Faults: o

The number of newly processed faults will
quickly decrease as the number of processed
faults increases. Further, the number of newly
processed faults per fault will decrease as the
number of target faults per server and the num-
ber of servers increase. In Ref. 10), we assumed
the ratio of newly processed faults to target
faults for the CS model to be

1

Yo+ nix +ramN
where m is the number of target faults to a server
per communication, N is the number of servers,
x is the number of processed faults and 7, 1 and
r, are constants. In this expression, the factor 1/
(r-+ rx) expresses the effect of fault simulation,
and the factor »,mN accounts for the decrease
ratio of newly processed faults due to over-
lapped processing (see Ref. 10)).

o(x)= (13)

Optimal Granularity of Parallel Test Generation 1617

About the factor for decrease ratio of newly
processed faults on the CAS model, we have to
consider the overlapped processing among
agents, in addition to the overlapped processing
among servers. After receiving the list of the
result from a server, an agent renews its own
fault table, which is the copy from the client.
Since multiple agents are working simultaneous-
ly, some agents may save the same faults detected
by servers. These overlapped processes will
increase and hence p; will decrease as the num-
ber of target faults per agent (m,), and the
number of agents (N,) increase. By introducing
this factor (m,N,) into the expression (13), we
have

1
rot+ nx -+ rmgNg+ rsmgN, (14)
where #, 1, 1, and r; are constants. In the above
expression, the factor rym,N, accounts for the
decrease ratio due to the overlapped processing
among agents.

4.5 Communication Time: 7., 7.

Here we have the following assumptions:

1) The size of data (fault table) transferred
between the client and an agent, or between an
agent and a server is fixed, and hence, the data
transfer time during communication between the
client and agents, or between an agent and
servers is a constant.

2) All agents communicate with the client
through a single communication network. All
servers also communicate with respective agents
through the same network. Agents and servers
can not consequently communicate while one of
the other processors communicates. Hence, the
waiting time during communication between the
client and an agent, or between an agent and a
server is proportional to the number of agents
plus the total number of servers, i.e., No+ NoNs.
3) After receiving the result from an agent, the
client updates the fault table, and sends a new set
of target faults. This work load increases in
proportion to the number of agents, N,. Hence,
the waiting time during working of the client is
proportional to N,. On the other hand, the work
load of an agent increases in proportion to the
number of the servers connected to the agent, Ns.
Hence, the waiting time during working of an
agent is proportional to Ns.

From the above assumptions, we have

Tca:ta0+talNa(Ns+l)+t02Na (15)

p(x) =

1618 Transactions of Information Processing Society of Japan

where f,0, t21 and f,; are constants. And we have
Tcs:ts0+tslNa(Ns+l)+tsst (16)
where I, f;; and i are constants.

Here we assume fly0=tso=1ty, la1=1ts1=1, and
tis=1ts;=10. Then we have

Tca:IO+t1Na(Ns+l)+t2Na (17)
and

Tes=l+ 4N, (Ns+ 1) + N (18)
where %, t;, and & are constants.

4.6 Total Processing Time: T

Suppose that the number of processed faults is
i when fault fr is processed where 7 is a
permutation of I,={l, 2, ---, M}. Then, from
the expression (14), the ratio of newly processed
faults when fault fr) is processed can be ex-
pressed as

|
RO = L T ramoNy TN, ()

Let P be the set of all permutations of I.
There is a one-to-one cofrespondence between
permutations of Iy and sequences of faults. The
total number of sequences is M!

From the expressions (1), (12), (17), (I8)
and (19), we can derive the average of total
processing time for all permutations:

1 LA
T=31 2 E NN,
° (I‘0+ ni+ rzmst+r3maNa)
(z'l-—i—EiJr&). (20)
mg Mg
On the other hand we have

2 éifﬂ(z’):gi<(ﬁ/]*' [)'iﬁ) (2])

nePi
Substituting the mean processing time for each
fault:

I M
=R (22)

into the right side of the above equation (21),
we have

M . M .
Kgpzlfn(i):igl(M!f). (23)
Hence, from (20) and (23) we have

M] .
T= EWJVS (ro+ ri-+ ramgNg+ rsmaN,)

1 Tea | Tes

(r} ”M+fnk) (24)
M M+1

_NaNs\r°+r‘ 2 + ramsNs
+r3maNa><r+%‘;+~;;—z> (25)

Partially differentiating T by ms,, we have

Aug. 1994

oT o M Tca
om, —Wm(“”s(f*z

<r0+rl_M2Ll+ rsmaNa>Tcs
_ msz

(26)
Then, we have

M /
TsmanTV N(£ NgTes
alVs
2
+\/<ro+r1M;rfl+r3maN,,><r+%>>

7

when

+ rSmaNa>Tcs

ot
Msopt — z
N+ e)
(28)

Partially differentiating Tsmin by m,, we have
VaTsmm_ M

(9ma NN

72 Nstes .

1+ -
<'])+r1 M2+] +r3maNa>([+%‘i>
a
<ﬂr%rr4!éf1'>ﬁm

i (29)

hlv&fﬁ"

Then, we have the minimum of T

M
Tmin:WaN*s<~/r2NsTcs +VrNatea
2
+ (ro‘l'r]’M'itJ")f) (30)
when
("0+ rlﬂ'zi>fca
Maopt = raNaT (3])
and
M +1
(ro"l' rlT+>Tcs
M=) S (32)

which is derived from the expression (28) by
substituting 71, in the expression for M.ep.

Figure 3 shows the graph of the total process-
ing time 7T as a function of the number of target
faults for an agent, m,, and the number of target
faults for a server, m;. From this figure we can
see that there exists an optimal number of target
faults for an agent, M4ep, and an optimal num-
ber of target faults for a server, msp:, Which
minimize the total processing time.

Vol.35 No.8 Optimal Granularity of Parallel Test Generation 1619
M =10000
Na=4
Ns=8
7=05
150 = 0.0001
Total
processing ry = 0.00001
time T r, = 0.0005
125 ry= 0.00004
T 15=02
100 1= 0.2
75 500
400
Tmin
o) 300
10 . = / 7200 Number of target
Mopt 20 - oo faults per agent m,;
Number of target
faults per server mg 50 Maopt

Fig.3 Total processing time versus granularity : Analysis.

The parallel test generation system of the CAS
model was implemented on a network (Ether-
net) of workstations (SUN4/LC’s). The FAN
algorithm® was used as a test-pattern generator.
Figures 4, 5 and 6 give the graphs of the total
processing time T as a function of the number of
target faults for an agent, m,, and the number of
target faults for a server, mg, for circuits $9234,
$13207 and 515850, respectively, of the ISCAS’89
benchmark circuits!® modified into com-
binational circuits by assuming full-scan design.
In these figures, we can see that the shape of the
graphs coincides closely with that of Fig. 3
obtained from the above analysis and hence
there exists an optimal granularity pair which
minimizes the total processing time.

5. Optimal Granularity with Dynamic
Task Allocation

In this section we shall consider dynamic task
allocation of faults where the numbers of target
faults for an agent and for a server will respec-
tively vary as time goes on.

Here, we consider again the homogeneous
case; i.e., ryr=r: and 8 .=3; for all faults f;
and servers S;. Suppose that the number of

processed faults is i when fault fr;, is processed
where 7 is a permutation of Iy={l, 2, ---, M}.
Let m,; and my be the numbers of target faults
allocated to an agent and a server, respectively,
when i faults have been processed by all servers
till then. Then the average of total processing
time 7T can be obtained by replacing m, by m,;
and ms by mg, in (20) as follows:

] M
T=yn 22 NNS
- (rg+r 11+rzms,N + rsmg:Ng)
(et et)
Mig;
(33)
Mo .
=§1 NN (ro+ ni + ramgNs+ rsma:No)
<r+;;-"-+,%> (34)

Partially differentiating the above expression by
ms;, we have
jT _ ML(< Tca)
amsi - Naf’vs ers Tt Mg,
_ (rotnitrmeNg) Tcs)

mé

(35)

Then, we have

1620 Transactions of Information Processing Society of Japan Aug. 1994

Total Circuit: $9234
processmg Na = 4
time T
Ns = 8
(sec)
1000
0 500 Number of target
faults per agent
Number of target 100 0 Magp =100
faults per server
Fig. 4 Total processing time versus granularity : Exper-
imental result for circuit $9234.
Total

Circuit: s13207
processing

(se0) 3 1!!\\\ \II / /

O faults per agent
Mepr=13 250
Number of target 0 Magp =100

100
faults per server

Fig. 5 Total processing time versus granularity : Exper-
imental result for circuit s13207.

Vol.35 No.8

Total
processing
time T
(sec)

Number of target
faults per server

100

Optimal Granularity of Parallel Test Generation 1621

750

500 Number of target
faults per agent

0 maopt=100

Fig. 6 Total processing time versus granularity : Exper-
imental result for circuit s15850.

M] I
Tsmin= Z ’N NT(\/"»ZNSTCS

i=1

. Tea \\?
+./ (tnit rgmaNa)(z'w‘ m_>>
(36)
when

— (r()'“}~ r1i+r3lnaNa) Tes

ers(Tt >

Partially differentiating Tsmn by Ma,, we have
Temn M
0Ma; NalNg

(],+\/ 2 NsTes)
(ro+ ni + ramq,Na) < r+—€%>

My
(r0+r1i) Tca
. raN [— g T
< ¢ m ai

(37)

Mg

(38)
Then, we have the minimum of T for dynamic
allocation:

M l —
Taynamic= ZI_MIW:(V/"ZNSTCS + x/rfi Natea

+\/(ro+l‘1irf)2 (39)
when
_ [{nt ni) tea
Mq; = r3NaZ' (40)

and

ﬁb + rli) Tes
ersT

From the above expressions (40) and (41), the

optimal granularity (the optimal size of target

faults) of time ¢ can be expressed as

ma([): / (rot::]‘lv/:;) Tca (42)

(r0+' rl&-j) ifcs (43)
rNsT

where x, is the total number of faults processed
by all servers till the time r. Hence, the best
performance or the test generation with the
minimum computation time will be achieved if
the dynamic task allocation is scheduled in
accordance with the above expression as follows:
The client counts up the total number x, of
processed faults till now (at time t), calculates
the number m1, (1) of target faults from the
equation (42), and then allocates m, () target
faults with the number x, to an agent. The agent
calculates the number m; (1) of target faults from
the equation (43), picks the m(1) target faults
out of the my, (t) target faults, and then allocates
the m,(f) target faults to an idle server. Note

msi:\/ , for all i. (41)

and

ms(’):

1622 Transactions of Information Processing Society of Japan

that although the equations (42) and (43) repre-
sent continuous functions, m,(t) and mg(t) are
respectively defined as integers.

Let us consider next how much reduction of
computation time will be achieved by dynamic
task allocation compared with static one. The
minimum of T for static allocation is

M
Tstatic= VrNstes +rsNatea
NoNs

2
+ ("04"‘1@")2’) (44)

Hence, the difference between Tyiaue and Taynamic
is

nlatlc - Tdynamlc

— 24/?(\/"2]\’.92}5 + x/r:sNaTca)

alNs

M

S D
This equation is always positive for M >1, that
is, the dynamic task allocation is always more
efficient than the static one.

6. Conclusions

In this paper we presented an approach to
parallel processing based on fault parallelism for
test generation in a loosely-coupled distributed
networks of general-purpose processors. In
order to get a more efficient scheme than the CS
model, we proposed another model called a
Client-Agent-Server model (CAS model) which
can decrease the work load of the client by
adding agent processors to the CS model.

We considered two granularities; one is the
size of the cluster between the client and agents,
and the other is the size of the cluster between
agents and servers. We formulated the problem
of test generation for the CAS model, and ana-
lyzed the optimal pair of granularities in both
cases of static and dynamic task allocation. We
presented experimental results based on an
implementation of our CAS model on a network
of workstations using the ISCAS’89 benchmark
circuits. The experimental results are very close
to the analytical results which confirms the
existence of an optimal pair of granularities that
minimizes the total processing time for bench-
mark circuits.

References

1) TIbarra, O. H. and Sahni, S. K.: Polynomially
Complete Fault Detection Problems, JIEEE

Aug. 1994

Trans. Comput., Vol. C-24, No. 3, pp. 242-249
(1975).

2) Fujiwara, H. and Toida, S.: The Complexity
of Fault Detection Problems for Combinational
Logic Circuits, IEEE Trans. Comput., Vol. C-31,
No. 6, pp. 555-560 (1982).

3) Goel, P.: An Implicit Enumeration Algo-
rithm to Generate Tests for Combinational Logic
Circuits, IEEE Trans. Comput., Vol. C-30, No. 3,
pp. 215-222 (1981).

4) Fujiwara, H. and Shimono, T.: On the Accel-
eration of Test Pattern Generation Algorithms,
IEEE Trans. Comput., Vol. C-32, No. 12, pp.
1137-1144 (1983).

5) Schulz, M. H. and Auth, E.: Advanced Auto-
matic Test Pattern Generation and Redundancy
Identification Techniques, Dig. Papers, FTCS-18,
pp. 30-35 (1988).

6) Kramer, G. A.: Employing Massive Parallel-
ism in Digital ATPG Algorithm, Proc. 1983 Int'l
Test Conf ., pp. 108-114 (1983).

7) Motohara, A., Nishimura, K., Fujiwara, H.
and Shirakawa, 1.: A Parallel Scheme for Test
Pattern Generation, Proc. IEEE Int’l Conf.
Computer-Aided Design, pp. 156-159 (1986).

8) Chandra, S. J. and Patel, J. H.: Test Genera-
tion in a Parallel Processing Environment, Proc.
IEEE Int'l Conf. Computer Design, pp. 11-14
(1988).

9) Hirose, F., Takayama, K. and Kawato, N.: A
Method to Generate Tests for Combinational
Logic Circuits Using an Ultra High Speed Logic
Simulator, Proc. 1988 Int’l Test Conf ., pp. 102-
107 (1988).

10) Fujiwara, H. and Inoue, T.: Optimal
Granularity of Test Generation in a Distributed
System, [EEE Trans. Computer-Aided Design,
Vol. 9, No. 8, pp. 885 892 (1990).

11) Patil, S. and Banerjee, P.: A Parallel Branch-
and-bound Algorithm for Test Generation, IEEE
Trans. Computer-Aided Design, Vol. 9, No. 3, pp.
313-322 (1990).

12) Patil, S. and Banerjee, P.: Performance Trade-
offs in a Parallel Test Generation/fault Simula-
tion Environment, IEEE Trans. Computer-Aided
Design, Vol. 10, No. 12, pp. 1542-1558 (1991).

13) Brglez, F., Bryan, D. and Kozminski, K.:
Combinational Profiles of Sequential Benchmark
Circuits, Proc. Int’l Symp. Circuits and Systems,
pp. 1929-1934 (1989).

14) Klenke, R. H., Williams, R. D. and Aylor,
J. H.: Parallel-Processing Techniques for Auto-
matic Test Pattern Generation, IEEE Computer,
Vol. 25, No. I, pp. 71-84 (1992).

Vol.35 No.8

(Received June 7, 1993)
(Accepted March 17, 1994)

Tomoo Inoue was born in
Tokyo, Japan, on July 20, 1965.
He-received the B.E. degree in
electric and communication engi-
neering and the M. E. degree in
electrical engineering from Me1J1
%m University, Kawasaki, Japan in
1988 and 1990, respectxvely From 1990t0 1992, he
was engaged in research and development of
microprocessors at Matsushita Electric Industrial
Co., Ltd., Osaka, Japan. Since 1993 he has been a
Research Associate at the Graduate School of
Information Science, Nara Institute of Science and
Technology, Japan.

His research interests include test generation,
design for testability and parallel processing. Mr.
Inoue is a member of the IEEE and the Institute of
Electronics, Information and Communication
Engineers of Japan and the Information Process-
ing Society of Japan.

Tomonori Yonezawa was
born in Kagoshima, Japan on
March 15, 1969. He received the
B.E. degree in electric and com-
munication engineering and the
M.E. degree in electrical engi-
neering from Meiji University,
Kawasaki, Japan in 1991 and 1993, respectively.
Since 1993 he has been with Kyushu Research
Group in Matsushita Electric Industrial Co., Ltd.
and engaged in development of VLSIs for
multimedia systems. His research interests include
test generation, parallel processing and image
processing.

Optimal Granularity of Parallel Test Generation 1623

g

Hideo Fujiwara was bornin
Nara, Japan, on February 9,
1946. Hereceivedthe B.E., M. E.,
and Ph.D. degrees in electronic
engineering from Osaka Univer-
sity, Osaka, Japan, in 1969, 1971,
and 1974, respectively. He was
w1th Osaka Unlver51ty from 1974 to 1985 and
Meiji University from 1985 to 1993, and joined
Nara Institute of Science and Technology in 1993.
In 1981 he was a Visiting Research Assistant
Professor at the University of Waterloo, and in
1984 he was a Visiting Associate Professor at
McGill University, Canada. Presently he is a
Professor at the Graduate School of Information
Science, Nara Institute of Science and Technol-
ogy, Japan.

His research interests are design and test of
computers, including design for testability, built-
in self-test, test pattern generation, fault simula-
tion, computational complexity, parallel process-
ing, neural networks and expert systems for design
and test. He is the author of Logic Testing and
Design. for Testability (MIT Press, 1985). Dr.
Fujiwara is a fellow of the IEEE as well as a
member of the Institute of Electronics, Informa-
tion and Communication Engineers of Japan and
the Information Processing Society of Japan. He
received the IECE Young Engineer Award in
1977 and TEEE Computer Society Certificate of
Appreciation Award in 1991.

