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Fault-Tolerant and Self-Stabilizing Protocols

Using an Unreliable Failure Detector

Hiroyoshi MATSUI†∗, Nonmember, Michiko INOUE†, Toshimitsu MASUZAWA†,
and Hideo FUJIWARA†, Regular Members

SUMMARY We investigate possibility of fault-tolerant and
self-stabilizing protocols (ftss protocols) using an unreliable fail-
ure detector. Our main contribution is (1) to newly introduce
k-accuracy of an unreliable failure detector, (2) to show that k-
accuracy of a failure detector is necessary for any ftss k-group
consensus protocol, and (3) to present three ftss k-group con-
sensus protocols using a k-accurate and weakly complete failure
detector under the read/write daemon on complete networks and
on (n−k+1)-connected networks, and under the central daemon
on complete networks.
key words: distributed algorithms, self-stabilization,
fault-tolerance, failure detector, x-group consensus

1. Introduction

Research on protocols that are both fault-tolerant and
self-stabilizing is important to develop truely reliable
distributed systems. A self-stabilizing protocol is a pro-
tocol that eventually achieves its intended behavior re-
gardless of the initial network configuration. A self-
stabilizing protocol tolerates any number of and any
kind of transient faults in a sense that it can converge
from any configuration resulted by transient faults if
no further fault occurs for a sufficiently long period of
time. On the other hand, a t-fault-tolerant protocol (for
a specific permanent fault model) is a protocol that al-
ways achieves its intended behavior from a designated
initial configuration regardless of at most t faults.

Gopal and Perry [1] first combined the concepts
of fault-tolerance and self-stabilization. They consider
the general omission faults (i.e., send and/or receive
omission, and/or crashing), and presented a compiler
that transforms a fault-tolerant protocol into a fault-
tolerant and self-stabilizing protocol for a synchronous
system. They also showed a fault-tolerant and self-
stabilizing consensus protocol using unreliable failure
detectors [2], [3] on asynchronous systems. Anagnostou
and Hadzilacos [4] considered the crash faults. They
defined a class of problems called failure-sensitive prob-
lems that includes the counting problem and the leader
election, and showed that no 1-fault-tolerant and self-
stabilizing protocol exists for the failure-sensitive prob-
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lems. They also presented randomized 1-fault-tolerant
and self-stabilizing protocol for the unique naming
problem on ring networks. Masuzawa [5] defined the
topology problem as a generalized problem of the count-
ing problem. He considered the crash faults and pre-
sented a (c−1)-fault-tolerant and self-stabilizing proto-
col for the topology problem on c-connected networks
under the assumption that each processor knows the
neighbors’ identifiers. He also showed that there exists
no 1-fault-tolerant and self-stabilizing protocol using
only either the neighbors’ identifiers or the knowledge of
connectivity. Beauquier and Kekkonen-Moneta [6] con-
sidered the crash fault and tried to clarify the problems
for which there exist k-fault-tolerant and self-stabilizing
protocols. They also presented 1-fault-tolerant and self-
stabilizing protocols for some problems on ring net-
works.

In this paper, we consider the crash faults, and in-
vestigate possibility of fault-tolerant and self-stabilizing
protocols using a failure detector. We extend an accu-
racy property of a failure detector and newly define a
k-accuracy property, which guarantees that at least k
correct processors are never suspected by any proces-
sors. We also define the x-group consensus problem,
which requires correct processors to select common x
correct processors. This problem is failure sensitive,
and a generalized problem of the election problem. Our
main results are (1) to show that k-accuracy of the
failure detector is necessary for a fault-tolerant and
self-stabilizing k-group consensus protocol, and (2) to
present three (n − k)-fault-tolerant and self-stabilizing
k-group consensus protocols which use a k-accurate and
weakly complete failure detector; a space-unbounded
protocol on complete networks under the read/write
daemon, a space-unbounded protocol on (n − k + 1)-
connected networks under the read/write daemon, and
a space-bounded protocol on complete networks under
the central daemon, where n is the number of proces-
sors. Our protocols are based on the checking and cor-
rection technique, which is widely studied to transform
protocols into self-stabilizing ones [7]–[9].

We treat two types of daemons, the read/write
daemon and the central daemon. The two types of
daemons are different in atomicity of an action of a
processor: the read/write daemon assumes finer grain
of atomicity. To classify influence of the difference on
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the possibility of self-stabilization is interesting and has
been investigated [10]. It is known that there exists
a problem that is solvable under the central daemon
but is unsolvable under the read/write daemon by self-
stabilizing protocols [11], [12]. We have interest with
relationship between such atomicity and fault-tolerant
and self-stabilizing protocols. In this paper, we present
only space-unbounded protocols under the read/write
daemon, while we can present a space-bounded proto-
col under the central daemon.

Chandra et al. [2], [3] investigated what informa-
tion about failures is necessary and sufficient for fault
tolerant protocols to solve the consensus problem.
They showed the weakest (i.e., necessary and sufficient)
failure detector for fault tolerant consensus protocols.
In this paper, we investigate what information about
failures is necessary and sufficient for fault-tolerant and
self-stabilizing protocols to solve the k-group consensus
problem which is a generalized problem of the leader
election. In short, our results show that k-accuracy
is necessary and sufficient for fault-tolerant and self-
stabilizing k-group consensus protocols.

We remark a “Γ-accurate” failure detector intro-
duced by Guerraoui et al. [13] (independently of our
work), where Γ is a subset of processors. The Γ-
accuracy is motivated by the observation that proces-
sors suspected to be crashed should be restricted when
the system is partitioned. Therefore, it specifies a set
Γ of processors that are not mistakenly suspected as
crashed processors. Our k-accuracy has a quite differ-
ent motivation. The k-accuracy specifies the number
of the processors mistakenly suspected to be crashed.
Network partitioning is avoided by requiring (n−k+1)-
connectivity in this paper.

The rest of this paper is organized as follows. Sec-
tion 2 and Sect. 3 present the computation model and
several definitions. Section 4 shows the necessity of
the k-accuracy of the failure detector for fault-tolerant
and self-stabilizing k-group consensus protocols. Three
(n − k)-fault-tolerant and self-stabilizing k-group con-
sensus protocols are presented in Sect. 5.

2. Preliminaries

2.1 Model

A network N = (P,L) consists of a set P = {p1, p2,
· · · , pn} of processors and a set L of communication
links (simply called links), where each link is a pair of
distinct two processors. If (pi, pj) ∈ L holds, then pi

and pj are called neighbors. A processor is a state ma-
chine. Each processor pi has a unique identifier idi,
drawn from some totally ordered set. We adopt the
link-register model introduced in [14]. Two neighbors
pi and pj communicate using two shared communica-
tion registers (simply called registers) Ri,j and Rj,i.
The register Ri,j can be written only by pi and read

only by pj . The register Ri,j is called an output regis-
ter of pi and an input register of pj.

A configuration of a network is a vector of proces-
sor states and resister contents. Let m be the number of
the registers, and let Si be the set of states of processor
pi and Σj be the set of symbols that can be stored in the
jth register†. The set C of all possible configurations is

C = S1 × S2 × · · · × Sn × Σ1 × Σ2 × · · · × Σm.

A protocol is a collection of algorithms, one for
each processor. Activity of processors is managed by a
daemon. Whenever the daemon activates a processor,
the processor executes an atomic step of its algorithm.
In this paper, we use two types of daemons. The central
daemon (C daemon, in short) activates one processor
at a time, and the atomic step of a processor consists of
(1) reading all its input registers, (2) changing its state,
and (3) writing all its output registers. The read/write
daemon (R/W daemon, in short) activates one proces-
sor at a time, and the atomic step of a processor consists
of (1) either reading one of its input registers or writ-
ing one of its output registers (but not both), and (2)
changing its state.

An execution E = c0, c1, c2 · · · of a protocol A is
an infinite sequence of configurations, where each ch+1

(h ≥ 0) is reachable from ch by a single atomic step
of some processor according to A. Configuration c0 is
called an initial configuration of E. We assume, for
each h ≥ 0, an atomic step a which changes the config-
uration from ch to ch+1 is uniquely determined. That
is, the execution implicitly defines a sequence of atomic
steps. Note that any non-empty suffix of any execution
is also an execution.

A processor is faulty if it does not follow the pro-
tocol. We consider only crash faults of processors: a
faulty processor stops prematurely and does nothing
from that point on, however, it behaves correctly be-
fore stopping. In the model of the state machine, oc-
currence of the crash fault is modeled as execution of a
special step called a crash step. The crash step changes
the processor state into a special state, crash state, and
has no effect on registers. In the crash state, no further
step can be executed. The crash step can be executed
at any state except for the crash state.

Given an execution E of a protocol A, let F(E)
denote a set of faulty processors (i.e. those in the crash
state after some point) and C(E) (= P −F(E)) denote
a set of correct processors. If every processor in C(E)
makes infinitely many steps in E, then E is called a
fair execution. We consider only a fair execution in
this paper, and simply use the term an execution for
a fair execution. We assume that a network is asyn-
chronous: there is no assumption on the number of

†For convenience, we assume a total order on the regis-
ters. This order is used only to describe the configuration,
and cannot be used in designing protocols.
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steps each processor executes in any prefix of an execu-
tion. Note that processor faults cannot be detected in
such an asynchronous network since it is impossible to
determine whether a processor has actually crashed or
is only “very slow”.

A problem specifies the required behavior of pro-
cessors. Formally we define a problem to be a set of legal
executions , which are executions satisfying the problem
requirement. A problem Π on a network N = (P,L)
with a set F ⊆ P of faulty processors is defined by
a set of legal executions denoted by LΠ(N, F ). Let
SLΠ(N, F ) denote a set of all non-empty suffixes of le-
gal executions in LΠ(N, F ).

A t-fault-tolerant (t-ft) protocol for a problem Π
is a protocol whose any execution starting from a des-
ignated initial configuration is legal for Π regardless of
at most t faulty processors. The designated initial con-
figuration is a configuration in which each processor is
in a prescribed initial state and each register contains
a prescribed symbol as its initial value.

Definition 1: Let N be a family of networks, t be a
non-negative integer, and Π be a problem. A proto-
col A is a t-fault-tolerant (t-ft) protocol for Π in N , if
any execution E of A such that E starts from the des-
ignated initial configuration in any network N (∈ N )
and satisfies |F(E)| ≤ t is in LΠ(N,F(E)).

A t-fault-tolerant and self-stabilizing (t-ftss) pro-
tocol for a problem Π is a protocol such that its any
execution E converges to some legal execution L of Π
(i.e., E and L have a common suffix) regardless of its
initial configuration and at most t faulty processors.

Definition 2: Let N be a family of networks, t be a
non-negative integer, and Π be a problem. A protocol A
is a t-fault-tolerant and self-stabilizing (t-ftss) protocol
for Π in N , if any execution E of A such that E starts
from any configuration in any network N (∈ N ) and
satisfies |F(E)| ≤ t has a suffix E′ in SLΠ(N,F(E)).

Usually, the above definition of stabilization is
called pseudo-stabilization [15], and stabilization is de-
fined by reachability to some legitimate configuration
and closure of a set of the legitimate configurations.
However, we consider the crash faults that can occur
out of control of the protocol, and deal with a failure-
sensitive problem that changes the legal executions by
occurrence of faults. Therefore, it is impossible to de-
sign a protocol which guarantees the closure of a set of
the legitimate configurations, and we adopt the defini-
tion of the pseudo-stabilization.

In this paper, we make some additional assump-
tion on a network. First, we assume that each pro-
cessor initially knows the identifiers of its neighbors as
well as its own identifier and this knowledge cannot be
corrupted by transient faults. That is, every processor
knows accurate identifiers of itself and its neighbors at
any configuration. In the case of complete networks,

this means that every processor initially knows accu-
rate identifiers of all processors.

2.2 x-Group Consensus

Anagnostou and Hadzilacos [4] showed that failure-
sensitive problems, including the leader election prob-
lem, has no 1-ftss protocol. In this paper, we define
and consider the x-group consensus problem as a gen-
eralized problem of the leader election problem, where
x is a positive integer. The x-group consensus problem
requires that correct processors select common x cor-
rect processors. This problem is very attractive since
it can be available such an universal solution that first
we select x correct processors and then the selected x
processors cooperatively solve a given problem. The x-
group consensus problem is failure-sensitive, and there
exists no 1-ftss x-group consensus protocol.

Definition 3 (x-group consensus problem): Let N =
(P,L) be a network. Assume that each processor pi

has a variable Activei representing a set of processor
identifiers†. An execution E = c0, c1, · · · is legal for x-
group consensus problem Π (i.e., E ∈ LΠ(N,F(E))),
iff there exist a set P ′ (⊆ C(E)) of x correct processors
(i.e., |P ′| = x) and an integer h0 (h0 ≥ 0) such that, in
any configuration ch (h ≥ h0), Activei = {idj|pj ∈ P ′}
holds for any correct processors pi (∈ C(E)).

2.3 Failure Detector

We use an unreliable failure detector introduced by
Chandra and Toueg [2]. The failure detector consists of
a collection of failure detecting processes, one for each
processor. The failure detecting process for a proces-
sor pi repeatedly suspects faulty processors except for
pi and manages pi’s local variable FPi representing an
identifier set of suspected processors. The change of the
value of FPi can be modeled by a change of the state of
pi. For an execution E = c0, c1, · · ·, let FPE,h

i denote a
value of FPi in configuration ch. If idj ∈ FPE,h

i holds,
we say that pi suspects pj in ch.

A failure detector is specified by two properties,
completeness and accuracy. Chandra and Toueg [2]
considered two completeness properties and four ac-
curacy properties. Strong (resp. weak) completeness
guarantees that every faulty processor is eventually sus-
pected by all (resp. some) correct processors.

Definition 4 (strong completeness): A failure detec-
tor is strongly complete if, for any execution E, there
exists some h0 such that, for any correct processor
pi (∈ C(E)) and any h (≥ h0), F(E) ⊆ FPE,h

i holds.

Definition 5 (weak completeness): A failure detector
is weakly complete if, for any execution E and any faulty

†For convenience, we use variables and a program to
represent a processor state and a state transition function.
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processor pi (∈ F(E)), there exist some correct pro-
cessor pj (∈ C(E)) and some h0 such that, for any
h (≥ h0), pi ∈ FPE,h

j holds.

Accuracy restricts the mistakes of a failure detec-
tor. In [3], four accuracy properties, strong accuracy,
weak accuracy, eventually strong accuracy and even-
tually weak accuracy are defined. Intuitively, strong
accuracy guarantees that no processor is suspected be-
fore it crashes, and weak accuracy guarantees that some
correct processes is never suspected. Eventually strong
(resp. weak) accuracy means that strong (resp. weak)
accuracy holds eventually. In this paper, we consider
some hierarchy between strong and weak accuracy. We
newly define k-accuracy, which guarantees that at least
k correct processors are not suspected by any proces-
sors. Clearly, 1-accuracy is equivalent to the weak ac-
curacy, and any k-accuracy is weaker than the strong
accuracy since it guarantees that any correct processors
is never suspected.

Definition 6 (k-accuracy): A failure detector is k-
accurate if the following holds: for any execution E
satisfying |C(E)| ≥ k, there exists a set P ′ (⊆ C(E)) of
k correct processors such that, for any processor pi and
any integer h (≥ 0), P ′ ∩ FPE,h

i = ∅ holds.

We can also consider eventually k-accuracy prop-
erty, which means that the k-accuracy holds eventu-
ally. However, we does not consider such a property,
since self-stabilizing protocols are required to eventu-
ally achieve their intended behavior, therefore, if we
consider an execution only after the k-accuracy holds,
it can be considered that the eventually k-accuracy is
equivalent with the k-accuracy.

3. Necessity of k-Accuracy for k-Group
Consensus

In this section, we show that the k-accuracy of the fail-
ure detector is necessary for 1-ftss k-group consensus
protocols. We show that there is no 1-ftss k-group
consensus protocol for the k-group consensus problem
which uses a (k − 1)-accurate and strongly complete
failure detector. Since a failure detector is specified by
completeness and accuracy, and strong completeness is
the strongest with respect to completeness, this result
implies that k-accuracy of the failure detector is neces-
sary for 1-ftss k-group consensus protocols, and hence,
for any ftss k-group consensus protocols.

First, we define some notations. Let c and c′ be
configurations. Let c

i
✶ c′ denote a configuration that

is identical to c except that pi’s state is the same as
in c′. Let ID be a set of identifiers. A configuration
c is ID-consensus if Activei = ID for every processor
pi which is not in the crash state. Let Ck denote a set
of all ID-consensus configurations such that the size of
ID is k.

Theorem 1: There exists no 1-ftss protocol for the
k-group consensus problem under the C daemon, even
if it can use a (k − 1)-accurate and strongly complete
failure detector.

(Proof) Assume that a protocol A is a 1-ftss proto-
col for the k-group consensus problem using a (k − 1)-
accurate and strongly complete failure detector in some
network family. We consider the following execution
E = c0, c1, · · · where F(E) = ∅ and every processor
suspects all the processors except for some k − 1 pro-
cessors and itself. Let FP be a set of n−k+1 identifiers
such that FPE,h

i = FP −{idi} for any pi ∈ P and any
h (≥ 0).

First, the daemon activates all processors until
some ID-consensus configuration ch1 in Ck is reached.
Since |ID| = k and |FP | = n− k+1, there exists some
idi such that idi ∈ ID ∩ FP . We temporarily assume
that pi in the crash state ch1 . Since A is a 1-ftss pro-
tocol, the daemon can lead the network to some ID′-
consensus configuration c′h2

in Ck where idi /∈ ID′. The
processor pi does nothing from ch1 to c′h2

, and the other
processors cannot distinguish whether pi has crashed or
is just slow. Therefore, steps from ch1 to c′h2

are possi-
ble to occur if pi is actually correct.

Now consider the case where pi is a correct proces-
sor. In this case the daemon can leads the network to
the configuration ch2 = c′h2

i
✶ ch1 by activating the

processor except for pi. In ch2 , Activei = ID and
Activej = ID′ �= ID for any j (j �= i), therefore,
ch2 /∈ Ck. Since A is 1-ftss protocol, some configuration
ch3 in Ck is reached again.

By repeating the above strategy, the daemon can
schedule processor steps so that configurations not in
Ck appear infinitely often in E. However, A is 1-ftss
protocol, and therefore, E has a suffix consisting of only
configurations in Ck. A contradiction occurs. ✷

Since the R/W daemon has smaller atomicity than
C daemon, the R/W daemon can activate processros in
the same way as the C daemon. Thus, impossibility
results for the C daemon holds for the R/W daemon,
and the following corollary holds.

Corollary 1: There exists no 1-ftss protocol for the
k-group consensus problem under the R/W daemon,
even if it can use a (k − 1)-accurate and strongly com-
plete failure detector.

4. (n − k)-ftss k-Group Consensus Protocols

4.1 Overview

We present the following three (n−k)-ftss k-group con-
sensus protocols.

• RWKP : a space-unbounded protocol under the
R/W daemon in complete networks.
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• RWKP ′ : a space-unbounded protocol under the
R/W daemon in (n − k + 1)-connected networks.

• CKP : a space-bounded protocol under the C dae-
mon in complete networks.

First, we describe the common overview to all pro-
tocols. In the description of the protocols in Fig. 1,
Fig. 2 and Fig. 3, readi,j(xi) denotes that pi reads its
input register Rj,i and stores the value to its local vari-
able xi, and writei,j(xi) denotes that pi writes the
value of its local variable xi to its output register Ri,j .
If the variable xi is partitioned into some fields xi.a,
xi.b, · · ·, we refer the corresponding fields of Ri,j as
Ri.a, Ri.b, · · ·. Let S be an identifier set. Let pickk(S)
denote a function returning the smallest k identifiers in

var

susi, Activei: set of processor ids;

rsus(1 ≤ j ≤ n): set of processor ids;

begin

susi := ∅; /* initialization */

repeat forever do

susi := susi ∪ FPi;

for each j (1 ≤ j ≤ n, j �= i) do

readi,j(rsus);

susi := susi ∪ rsus;

Activei := pickk({id1, · · · , idn} − susi);

for each j (1 ≤ j ≤ n, j �= i) do

writei,j(susi);

end

Fig. 1 (n − k)-ft protocol KP : code for pi.

var

susi, Activei, sdata.sus, rdata.sus

: set of processor ids;

sdata.vn, rdata.vn : integer;

begin

repeat forever do

susi := susi ∪ FPi;

for each j (1 ≤ j ≤ n, j �= i) do

readi,j(rdata);

if rdata.vn = vni then

susi := susi ∪ rdata.sus;

if |susi| > n − k then

susi := ∅; vni := vni + 1;

else

Activei := pickk({id1, · · · , idn} − susi);

else if rdata.vn > vni then

vni := rdata.vn; susi := rdata.sus;

sdata.sus := susi; sdata.vn := vni;

for each j (1 ≤ j ≤ n, j �= i) do

writei,j(sdata)

end

Fig. 2 (n − k)-ftss protocol RWKP :code for pi.

S. Note that a variable FPi denote an identifier set of
suspected processors and it is under the control of the
failure detecting process for pi. In this subsection, we
present (n−k)-ftss protocols, and therefore, we consider
only such an execution E that F(e) ≤ n − k holds.

Our three protocols are based on a (n− k)-ft pro-
tocol KP in complete networks under the R/W dae-
mon (Fig. 1). The protocol KP uses a k-accurate and
weakly complete failure detector. The protocol is cor-
rect if all Activei (= pickk({id1, · · · , idn} − susi)) of

var
susi, sdatai,j .sus, rdataj,i.sus, Activei, Rcvi

: set of processor ids;
sdatai,j .F , rdataj,i.F : boolean;

/* flag for communication mechnism */
sdatai,j .R, rdataj,i.R: boolean; /* reset request */
modei: NORMAL or RESET;

begin
repeat forever do

/* receive messages */
Rcvi := ∅;
for each j (j �= i) do

readi,j(rdataj,i);
/* select newly received messages */
if first read(Ri,j ) = true

then Rcvi := Rcvi ∪ {j};

/* update susi */
if there exists j ∈ Rcvi s.t. rdataj,i.R = true

then /* case: reset-request */
susi := ∅; modei := NORMAL;

else /* case: normal message */
/* update a total suspicion */
susi := susi ∪

⋃
j∈Rcvi

rdataj,i.sus ∪ FPi;

if |susi| > n − k
then /* inconsistency is detected */
/* reset itself */
susi := ∅; modei := RESET ;

else
/* select k correct processros */
Activei := pickk({id1, · · · , idn} − susi);
modei := NORMAL;

/* set messages for processors read privious messages. */
for each j ∈ Rcvi do

sdatai,j .sus := susi; sdatai,j .R := false;
/* for communication mechanism */
sdatai,j .F := (sdatai,j .F + 1)mod 2;

/* update messages if reset mode */
if modei = RESET /* reset mode */

then
/* set reset-requests for all processors */
for each j (j �= i) do

sdatai,j .R := true; /* reset-request */

/* send messages */
for each j (j �= i) do

writei,j(sdatai,j );
end.

Fig. 3 (n − k)-ftss protocol CKP : code for pi.
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correct processors converge to the same set of k cor-
rect processors. To show this convergence, we prove
the convergence of a variable susi. A variable susi

represents a set of processor identifiers which pi itself
suspects or pi knows some processor suspects. We call
susi a total suspicion of pi. We can observe that ev-
ery total suspicion monotonically increases with respect
to the inclusion relation ‘⊆’, any correct processor pi’s
total suspicion will be included by any other correct
processor pj’s total suspicion after sufficient number of
steps, and a total suspicion of every correct processor is
bounded from above by a set of all identifiers. There-
fore, all total suspicions of correct processors converge
to the same set sus of identifiers. From the k-accuracy
and the weak completeness of the failure detector, this
sus includes all faulty processors and never includes at
least k correct processors if there exist at least k cor-
rect processors (i.e., at most n − k faulty processors).
Therefore, all Activei of correct processors converge to
the same set of k correct processors. This means that
KP is an (n − k)-ft k-group consensus protocol.

Now, we extend (n−k)-ft protocol KP to (n−k)-
ftss protocols. For ftss protocols, we can assume noth-
ing on the initial total suspicion. If some susi initially
includes many correct processor identifiers, the size of
susi may exceed n − k. This is inconsistent with the
k-accuracy of the failure detector. In our ftss protocols,
each pi checks such inconsistency (i.e., |susi| > n − k)
whenever it updates the value of susi. If pi detects the
inconsistency, pi resets its state (sets its total suspicion
empty) and attempts to reset a network configuration
(set the network to some configuration reachable from
the designated initial configuration of KP ). If the net-
work configuration can be reset, the k-group consensus
problem can be solved.

Note that the protocol KP has infinite iterations
and any processors does not know when the variable
Activei converges. This is natural because the conver-
gence period of Activei depends on both time when
processors crash and suspicions of failure detectors.

4.2 Protocols under the R/W Daemon

We present an (n − k)-ftss protocols for the k-group
consensus problem using a k-accurate and weakly com-
plete failure detector under the R/W daemon. First,
we present a protocol RWKP (Fig. 2) in complete net-
works, and then extend it to be applicable to (n−k+1)-
connected networks.

In RWKP , each processor pi uses a variable vni

representing the version number of its local suspicion
susi. Each processor exchanges the total suspicion
with other processors. When pi reads the total sus-
picion rdata.sus with version number rdata.vn from
its input register, pi updates its total suspicion as fol-
lows: (1) if rdata.vn > vni, pi resets its total suspi-
cion and sets susi to rdata.sus, (2) if rdata.vn = vni,

pi adds rdata.sus to susi, and if it becomes inconsis-
tent, i.e., |susi| > n − k, pi resets its total suspicion
and increments its version number by one, and (3) if
rdata.vn < vni, pi ignores rdata.sus and does nothing.

To prove the correctness of RWKP , we must show
the convergence of the variables Activei of all correct
processors. This convergence is derived directly from
the convergence of the total suspicions of all correct
processors. To show this, we use the following lemma.
It shows conditions for that all total suspicions converge
to the same set which includes all faulty processors. For
an execution E = c0, c1, · · ·, let vE,h denote a value of
a variable v in a configuration ch.

Lemma 1: Consider any protocol in which each pro-
cessor pi has a variable susi of an identifier set and uses
a weakly complete failure detector. Let E = c0, c1, · · ·
be an execution of the protocol. If the following four
conditions hold, there exist some set sus and some g0

such that F(E) ⊆ sus and, for any pi (∈ C(E)) and
any g (≥ g0), susE,g

i = sus holds.

(1) There exists a set S of identifiers such that
susE,h

i ⊆ S holds for any pi (∈ C(E)) and any
h.

(2) For any pi (∈ C(E)) and any h and h′ (h ≤ h′),
susE,h

i ⊆ susE,h′
i holds.

(3) For any pi and pj (pi, pj ∈ C(E)) and any h, there
exists some h′ such that susE,h

i ⊆ susE,h′
j .

(4) For any susi (pi ∈ C(E)) and any h (h > 0),
FPE,h−1

i ⊆ susE,h
i holds.

(Proof) For every correct processor, condition (1)
means susi has an upper bound (w.r.t. ‘⊆’), and con-
dition (2) means susi monotonically increases. There-
fore, every susi (pi ∈ C(E)) converges to some set
final susi. The condition (3) implies, for any cor-
rect processors pi and pj , final susi ⊆ final susj

and final susj ⊆ final susi, therefore, final susi =
final susj holds. Therefore, there exist some set sus
and some g0 such that, for any pi (∈ C(E)) and any
g (≥ g0), susE,g

i = sus holds. Moreover, by (2) and (4),
FPE,h−1

i ⊆ final susi, and
⋃

pi∈C(E) FPE,h−1
i ⊆ sus

hold for any h (h > 0). By the weak completeness,
F(E) ⊆ sus holds. ✷

Now we show the correctness of RWKP .

Lemma 2: For any execution E = c0, c1, · · · of
RWKP under the R/W daemon, there exists an in-
teger vn such that vnE,h

i ≤ vn holds for any i and h.

(Proof) Let max be the maximum version number ap-
pears in c0. Assume that the lemma does not hold,
i.e., some version numbers have no upper bound. Let
cg the first configuration in which some version num-
ber becomes no smaller than max + 2. Let pi be a
processor such that vnE,g

i = max′ (≥ max + 2). In
cg−1, no version number is more than max + 1, there-
fore, in a step from cg−1 to cg, pi ought to detect the
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inconsistency |susi| > n − k and increment vni from
max′ − 1 to max′. Let sus′ denote the value of this
inconsistent susi. In RWKP , every total suspicion
is computed from the total suspicions with the same
version number, therefore, pi computes sus′ from the
total suspicions with version number max′ − 1. Since
max′ − 1 > max, every processor with version number
max′−1 has reset its total suspicion at least once. This
implies that every total suspicion with version number
max′ − 1 includes only the identifiers suspected by the
failure detector. That is, sus′ ⊆ ⋃

pi∈P,0≤h<g FPE,h
i

holds. However, |⋃pi∈P,0≤h<g FPE,h
i | ≤ n − k holds

by the k − accuracy, a contradiction occurs. ✷

Theorem 2: If the failure detector is k-accurate and
weakly complete, the protocol RWKP is an (n−k)-ftss
k-group consensus protocol in complete networks under
the R/W daemon.

(Proof) Consider any execution E = c0, c1, · · · of
RWKP . By Lemma 2, there exists the maximum
value max vn of version numbers of correct proces-
sors appear in E. Let ch be a configuration in which
vnE,h

i = max vn for some correct processor pi. Since
each version number never decreases, vnE,h′

i = max vn
holds for any h′ ≥ h. Fairness of executions guarantees
that, for any correct processor pj , pi writes max vn
to the register Ri,j as a value of vni, and after then
pj reads Ri,j . After pj reads the value max vn, vnj

becomes at least max vn. Since max vn is the max-
imum value of version numbers of correct processors,
vnj becomes max vn and remains max vn after that.
That is, E has some suffix E′ = c′0, c′1, · · · such that
vnE′,h

j = max vn for any correct processor pj and any
h ≥ 0.

In E′, any correct processor never increments its
version number, therefore, it never resets its total sus-
picion. Now we show that Lemma 1 can be applied for
E′. (1) Clearly, every susE′,h

i ⊆ {idi|pi ∈ P} holds for
any pi ∈ C(E′) and h. (2) susE′,h

i ⊆ susE,h′
i holds for

any pi ∈ C(E′) and any h and h′ (h ≤ h′). (3) For any
pi and pj (pi.pj ∈ C(E′)) and any h, there exists some
h̄ and h′ (h ≤ h̄ ≤ h′) such that pi writes susE′,h̄

i (⊇
susE′,h

i ) to Ri,j and then pj reads susE′,h̄
i from Ri,j

and sets susE′,h′
j (⊇ susE′,h

i ). Finally, (4) for any susi

(pi ∈ C(E′)) and any h (h > 0) FPE′,h−1
i ⊆ susE′,h

i

holds. By the above (1), (2), (3) and (4), and the facts
of C(E′) = C(E) and F(E′) = F(E), there exist some
set sus and some g0 such that F(E) ⊆ sus and, for any
pi ∈ C(E) and g (≥ g0), susE′,g

i = sus hold. Since any
correct processor (∈ C(E)) never resets its total suspi-
cion in E′, |sus| ≤ n−k holds. Let Active be the value
of pickk({id1, id2, · · · , idn} − sus). Then, |Active| = k
and Active ⊆ {idj|pj ∈ C(E)} hold. For any pi ∈ C(E)
and any g ≥ g0, susE′,g

i = sus holds, and therefore,

and ActiveE′,g
i = Active holds. Since E′ is a suffix of

E, this implies that E is a legal execution for the k-
group consensus problem. ✷

The protocol RWKP in complete networks can be
extended to an (n− k)-ftss protocol in any (n− k +1)-
connected networks. Masuzawa [5] proposed an (n−k)-
ftss topology protocol in (n − k + 1)-connected net-
works under the assumption that each processor ini-
tially knows the identifiers of its neighbors. In an execu-
tion of the topology protocol, each processor eventually
obtains the network topology including an accurate set
of identifiers of all processors. Now consider the com-
posite protocol RWKP ′ of RWKP and the topology
protocol. In RWKP ′, each processor alternatively exe-
cutes a step of RWKP ′ and a step of the topology pro-
tocol. The differences between RWKP and RWKP ′

are (1) each processor initially knows an accurate set
of identifiers of all processors in RWKP , and (2) any
two processors can directly communicate via the regis-
ters between them in RWKP . These are resolved as
follows. (1) In any execution of RWKP ′, each pro-
cessor eventually obtains an accurate set of identifiers
of all processors, and (2) any two correct processors
have a path between them consisting of only correct
processors, and fairness of executions guarantees that
every total suspicion is propagated through the path
unless it meets with a larger version number. Therefore,
RWKP ′ is an (n − k)-ftss k-group consensus protocol
in (n − k + 1)-connected networks.

Corollary 2: If the failure detector is k-accurate and
weakly complete, the protocol RWKP ′ is an (n − k)-
ftss k-group consensus protocol in (n−k+1)-connected
networks under the R/W daemon.

4.3 Protocol under the C Daemon

The protocol RWKP and RWKP ′ are space-un-
bounded, since they use an unbounded variable vni.
In this subsection, we present a space-bounded ftss k-
group consensus protocol CKP (Fig. 3) in complete
networks under the C daemon. Note that we cannot
obtain a space-bounded protocol on any (n − k + 1)-
connected network by combining the protocol CKP
and the topology protocol [5], since the topology proto-
col is space-unbounded.

In CKP , when some processor pi resets by detec-
tion of the inconsistency |susi| > n − k, the other pro-
cessors reset synchronously. Synchronous reset means
that each pj (�= pi) resets in the first step of itself af-
ter pi resets, and, after that time on, exchanges mes-
sages only with reset processors. To implement this
synchronous reset, CKP provides the following com-
munication mechanism.

• Detection of the duplicated read by the
reader: When pj reads Ri,j , pj can find whether
pi wrote Ri,j after the last read of Ri,j .
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• Detection of the unread by the writer: When
pi reads Rj,i, pi can find whether pj read Ri,j after
the last write to Ri,j .

These mechanism can be implemented if each of pi and
pj can find which processor executed last in a step of
itself. For this purpose, CKP uses a flag field F in each
register. When pi writes to Ri,j , pi updates Ri,j .F so
as to be last processor(pi, pj) = pi, where the function
last processor is defined as follows.

last processor(pi, pj)

=




pi if (idi < idj ∧ Ri,j .F �= Rj,i.F )
∨(idi > idj ∧ Ri,j .F = Rj,i.F )

pj otherwise

In Fig. 3, the following predicate is used.

first read(Rj,i)
= (idi < idj ∧ sdatai,j .F = rdataj,i.F )
∨ (idi > idj ∧ sdatai,j .F �= rdataj,i.F )

Each processor pi decides whether pi reads Rj,i first
after the last write to Rj,i using this predicate.

Synchronous reset is implemented as follows. First,
consider the case where some processor pi detects the
inconsistency |susi| > n − k, resets itself, and then re-
quires all the other processors to reset themselves by
setting a reset-request flag R to true in its each out-
put register. Under the C daemon, the detection of the
inconsistency and the set of reset-request flags are exe-
cuted in a single atomic step. We call this atomic step
a reset-request step. The processors pi holds the reset-
request flag in Ri,j true until the processor pj reads
this request. On the other hand, pj (�= pi) reads this
request in the first step of itself after the reset-request
step, and then resets itself.

First, we prove the communication mechanism.

Lemma 3: For any execution E of CKP under the C
daemon, there exists some suffix of E in which, for any
step ai of any pi, (1) there exists the last step a′

i of pi be-
fore ai in E and, (2) for any pj (�= pi), first read(Rj,i)
holds in ai if and only if there exists a step of pj between
a′

i and ai.

(Proof) Let E′ be some suffix of E after every correct
processor executes at least one step and all faulty pro-
cessors have crashed. Consider any step of any pi in
E′. Since only correct processors execute steps in E′,
(1) there exists the last step a′

i of pi before ai in E.
Let pj be any processor (maybe a faulty processor).

In a′
i, pi reads Rj,i and stores the value to rdataj,i.

The processor pi appends j to Rcvi if and only if
first read(Rj,i) holds. At the end of a′

i, pi increments
sdatai,j .F if j is in Rj,i, and then writes sdatai,j .F to
Ri,j . At that time, last processor(pi, pj) = pi holds.

If pj executes a step aj between a′
i and ai, at

the end of aj , last processor(pi, pj) = pj holds, and

it continues to hold until ai is executed. On the
other hand, if pj executes no step between a′

i and ai,
last processor(pi, pj) = pi continues to hold until ai is
executed.

In ai, sdatai,j .F = Ri,j .F holds since only pi

writes to Ri,j and rdataj,i.F = Rj,i.F holds since
pi first reads Rj,i and sets rdataj,i = Rj,i. There-
fore, last processor(pi, pj) = pj holds if and only
if first read(Rj,i) holds. This implies that (2)
first read(Ri,j) holds in ai if and only if there exists a
step of pj between a′

i and ai. ✷

Next, we prove the synchronous reset.

Lemma 4: Any execution E of CKP under the C
daemon has some suffix in which no processor executes
a reset-request step.

(Proof) Consider some suffix E′ satisfying Lemma 3.
Let pi be the first processor which executes a reset-
request step ai in E′ if exists. In the reset step ai, pi

writes the value true to each output register Ri,j .R.
After ai, pi never changes the value of Ri,j .R until pj

reads it. If a processor pj (�= pi) executes its step af-
ter ai, pj reads the value true from Ri,j .R in the first
step aj after that reset step, and then resets itself. In
this aj , pj also reads all its input registers, therefore,
pj reads, in aj at the latest, all messages written before
the reset step. In aj, pj actually ignores the messages
that pj read from its input registers. In later steps,
pj ignores such ignored messages even if pj reads them
again. Therefore, after the reset step, every processor
creates its total suspicion from the messages written
after the reset-request step ai and the suspected iden-
tifiers from its failure detecting process. This implies
that, at the end of any step of any pj (∈ P ) after the
reset step, susj ⊆ ⋃

pi∈P,0≤h FPE,h
i holds, therefore,

|susj| ≤ n − k holds from the k-accuracy of the fail-
ure detector and pj does not reset itself. That is, E
has some suffix in which no processor executes a reset-
request step. ✷

Now we show the correctness of CKP .

Theorem 3: If the failure detector is k-accurate and
weakly complete, the protocol CKP is an (n − k)-ftss
k-group consensus protocol in complete networks under
the C daemon.

(Proof) We first show the convergence of variables
susi. By Lemma 4, for any execution E of CKP
under the C daemon, there exists some suffix E′ in
which no processor executes a reset-request step. In
CKP , each processor pi ignores any message if pi has
already read it. Since no processor executes a reset-
request step in E′, each pi resets itself at most once
when it first reads a reset request. Therefore, E′ has
some suffix E′′ = c′′0 , c′′1 , · · · in which no processor re-
sets itself. Now we show that Lemma 1 can be ap-
plied for E′′. (1) Clearly, every susE′′,h

i ⊆ {idi|pi ∈ P}
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holds for any pi and h. (2) susE′′,h
i ⊆ susE′′,h′

i holds
for any pi ∈ C(E′′) and any h and h′ (h ≤ h′). (3)
Fairness of executions guarantees that for any pi and
pj (pi, pj ∈ C(E′′)) and any h, there exists some h′

such that susE′′,h
i ⊆ susE′′,h′

j . Finally, (4) for any susi

(pi ∈ C(E′′)) and any h (h > 0), FPE′′,h−1
i ⊆ susE′′,h

i

holds.
By the above (1), (2), (3) and (4), and the facts

of C(E′′) = C(E) and F(E′′) = F(E), there exist
some set sus and some g0 such that F(E) ⊆ sus

and, for any pi ∈ C(E) and g (≥ g0), susE′′,g
i = sus

hold. Since no processor executes a reset step in E′′,
|sus| ≤ n − k holds. Let Active be the value of
pickk({id1, id2, · · · idn} − sus). Then, |Active| = k and
Active ⊆ {idj|pj ∈ C(E)} hold. For any pi ∈ C(E) and
any g ≥ g0, susE′′,g

i = sus holds, and therefore, and
ActiveE′′,g

i = Active holds. Since E′′ is a suffix of E,
this implies that E is a legal execution for the k-group
consensus problem. ✷

5. Conclusion

We considered fault-tolerant and self-stabilizing pro-
tocols using an unreliable failure detector. We de-
fined k-accuracy of the failure detector, and showed
the k-accuracy is necessary for ftss protocols for the
k-group consensus problem. We also presented three
(n − k)-ftss k-group consensus protocols using the k-
accurate and weakly complete failure detector, (1) a
space-unbounded protocol on complete networks under
the R/W daemon, (2) a space-unbounded protocol on
(n−k+1)-connected networks under the R/W daemon,
and (3) a space-bounded protocol on complete networks
under the C daemon. The first protocol shows that
(n − k)-ftss k-group consensus can be solved in com-
plete networks using a k-accurate and weakly complete
failure detector even under the R/W daemon. We mod-
ified the protocol to the second one so that it should
solve the problem in (n − k + 1)-connected networks,
a larger class of networks than the first one. However,
these two protocols are space-unbounded. We resolved
this disadvantages for the C daemon, which assumes
larger atomic actions than the R/W daemon. Though
the third protocol achieves space-bounded under the C
daemon, it can be applied only to complete networks.
The space-boundedness is an important requirement for
self-stabilizing protocols. Practically, we can prepare
sufficiently large spaces for unbounded variables if they
are used in some non-self-stabilizing protocol. How-
ever, self-stabilizing protocols and ftss protocols can
be started from any configuration, and therefore, we
cannot prepare a sufficiently large space for unbounded
variables in advance. It is one of our future works to
investigate the possibility of a space-bounded ftss k-
group consensus protocol under the R/W daemon.
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